Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7516499

Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant`s adaptation to drought condition.
Tuesday, 2017/03/21 | 07:42:28

Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L.

Sci Rep. 2017 Jan 4; 7:39843. doi: 10.1038/srep39843.

EPIGENETICS

Abstract

Epigenetic mechanisms are crucial mediators of appropriate plant reactions to adverse environments, but their involvement in long-term adaptation is less clear. Here, we established two rice epimutation accumulation lines by applying drought conditions to 11 successive generations of two rice varieties. We took advantage of recent technical advances to examine the role of DNA methylation variations on rice adaptation to drought stress. We found that multi-generational drought improved the drought adaptability of offspring in upland fields. At single-base resolution, we discovered non-random appearance of drought-induced epimutations. Moreover, we found that a high proportion of drought-induced epimutations maintained their altered DNA methylation status in advanced generations. In addition, genes related to transgenerational epimutations directly participated in stress-responsive pathways. Analysis based on a cluster of drought-responsive genes revealed that their DNA methylation patterns were affected by multi-generational drought. These results suggested that epigenetic mechanisms play important roles in rice adaptations to upland growth conditions. Epigenetic variations have morphological, physiological and ecological consequences and are heritable across generations, suggesting that epigenetics can be considered an important regulatory mechanism in plant long-term adaptation and evolution under adverse environments.

 

See www.nature.com/scientificreports

 

Figure 1: Improved drought adaptability of advanced generations.

(A) Physiological indexes that indicate the drought tolerance level of rice plants during drought, including the MDA content, which represents oxidative damage to the plant cells, and the activities of SOD, POD and CAT, important components of the oxygen radical-scavenging enzyme system. (B) Morphological phenotypes in upland fields. (C) Morphological phenotypes in PVC cylinders.

Back      Print      View: 465

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD